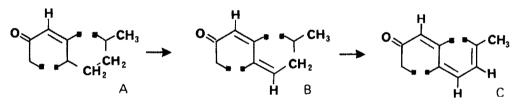
CHETTAPHANIN-I, A NOVEL FURANODITERPENOID

Aiya Sato, Masaaki Kurabayashi, Hitoshi Nagahori, Akira Ogiso,

and Hiroshi Mishima

Central Research Laboratories, Sankyo Co., Ltd.

Hiromachi, Shinagawa-ku, Tokyo

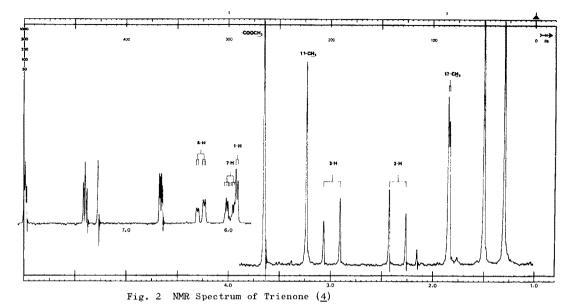

(Received in Japan 28 January 1970; received in UK for publication 17 February 1970)

'Chettaphangkhi' is a indigenous drug applied for stomachics in Thailand and is obtained from the roots of <u>Adenochlaena siamensis</u> Ridl. (Euphorbiaceae)¹⁾. From a methylene chloride extract, we have isolated several crystalline furanoditerpenoids by careful repeated column chromatography. We report here the structural elucidation of chettaphanin-I (<u>1</u>) designated as the most abundant component of the extract.

Chettaphanin-I (1), mp. 158-159°, (a) $_{\rm p}$ -72.7° (c=2.0, acetone), has the molecular formula of $C_{21}H_{26}G_{6}$ from elemental analysis and the mass spectrum with a parent peak at 374.174 (Calcd. 374.173). In the nmr spectrum of 1, one secondary and two tertiary methyl groups resonate at δ 0.90 (3H, d, J=6.5 Hz) and at δ 1.20 and 1.37 (3H, s, respectively). The signals appearing at § 6.65 (1H, q), 7.42 (1H, q), and 8.00 (1H, q) are characteristic of a 3-substituted furan² (ν^{nujol} 3120, 1555, 1500, 1040, and 878 cm⁻¹)³. The three proton singlet at δ 3.71 is ascribed to a carbomethoxy hydrogens, the presence of which is confirmed from the IR (1725 and 1155 cm⁻¹) and mass spectral data⁴ (various abundant peaks arising from the α -cleavage of a bond adjacent to the methyl ester carbonyl group, $C_{21}H_{26}O_{6}^{+} \rightarrow C_{19}H_{23}O_{4}^{+}$, $C_{21}H_{24}O_{5}^{+} \rightarrow C_{19}H_{21}O_{3}^{+}$, $C_{15}H_{21}O_{4}^{+} \rightarrow C_{13}H_{18}O_{2}^{+}$ etc.), and the spectroscopic investigation of the tetraol (2), $C_{20}H_{30}O_5$, mp. 178-179°, obtained by lithium aluminium hydride reduction of 1. Since the nmr signals of the hydroxymethylene of the primary alcohol 2a (δ 3.68 and 4.13, q, J=12 Hz), and acetoxymethylene of its acetate $\underline{2b}$ (δ 4.03 and 4.17, q, J=11 Hz) do not show coupling with any other protons, the carbomethoxy group of 1 must be attached to a quarternary carbon atom. The two AB-type quartets of <u>1</u> at δ 2.45 and 2.79 (J=17 Hz) and at δ 3.20 and 3.31 (J=19 Hz) are assigned to the isolated geminal methylene hydrogens adjacent to carbonyl groups, because these

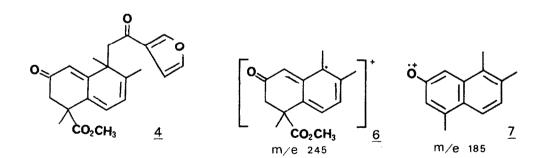
signals shift upfield in the nmr of 2. In addition, one proton singlet at δ 5.83 suggests the presence of a trisubstituted α , β -unsaturated ketone (ν ^{nujol} 1665 cm⁻¹, $\lambda_{max}^{\text{EtOH}}$ 247 mµ: ϵ =13,000) and the one proton singlet at δ 2.27, which is absent in D₂0, suggests that there is a tertiary hydroxyl group (ν ^{nujol} 3650 cm⁻¹).

Dehydration of <u>1</u> with acid led to an $\alpha, \beta, \gamma, \delta$ -unsaturated ketone (<u>3</u>), $C_{21}H_{24}O_5$, mp. 165-166° (no OH band in IR, $\lambda_{\max}^{\text{EtOH}}$ 283 mµ: ε =13,500). In the nmr of <u>3</u>, one of the two olefinic protons resonates at δ 5.90 as a doublet and the other at δ 6.05 as a multiplet. Since irradiation of the former signal changes the latter signal into a quartet, these protons undergo long-range coupling with each other and with this, the partial structures shown in Fig. 1 (A \rightarrow B) are established.

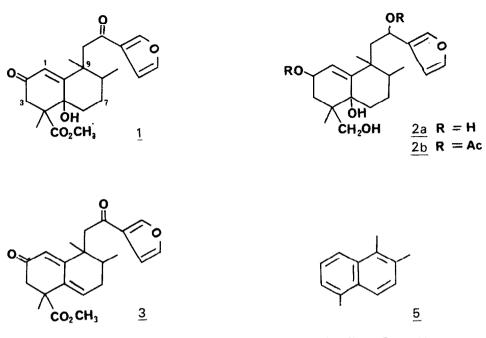


The symbol • refers a carbon atom bearing no proton.

Fig. 1


The dienone (3) was refluxed with N-bromosuccinimide and catalytic amount of dibenzoyl peroxide in CCl₄. Chromatography of the product on silica gel yielded the trienone (4), $C_{21}H_{22}O_5$, mp. 152-154° (λ_{max}^{EtOH} 252 and 372 mµ: ϵ =8,900 and 10,500)⁵). The nmr of 4 (Fig. 2) clarified the skeletal arrangement of the nine carbon atoms containing the secondary methyl group in chettaphanin-I (1) as shown in Fig. 1 (C). The remaining structural features to be accommodated are two tertiary methyl groups, a tertiary carbomethoxy group, and a furano-keto-methylene group. These fragments account for the all carbon, hydrogen and oxygen atoms in 4.

The framework of <u>1</u> was established by the fact that dehydrogenation of <u>2</u> with selenium afforded 1,2,5-trimethylnaphthalene $(5)^{6}$ in high yield.


The high resolution IR spectra of <u>1</u> and its derivatives showed absence of a gem-dimethyl group. The mass spectrum of <u>4</u> supports the absence of a gem-dimethyl group. The dominant fragmentation of the molecular ion (m/e 354, 71%) gives the ion (<u>6</u>) at m/e 245 (85%) (M-CH₂COC₄H₃O), from which the loss of CH₃CO₂ and H afforded the ion (<u>7</u>) at m/e 185 as the base peak. The extrusion of methyl from the ions (<u>6</u> and <u>7</u>) was not observed. These facts

exclude the possibility that the carbomethoxy group is bonded at C-9.

The structure of chettaphanin-I is therefore defined as <u>1</u>. The structure of chettaphanin-I (<u>1</u>) does not conform to the biogenetic 'isoprene rule' and it is thus a new-type furanoditerpenoid with a rearranged labdane or eperuane skeleton.

Detailed work to define the stereochemistry of <u>1</u> will be published in near future.

<u>Acknowledgement</u>. The authors express their thanks to Dr. Komol Pengsritong, Ministry of Public Health, Thailand for his interest in this work.

References

- <u>An Initial List of Thai Medicinal Plants</u>; Technological Research Institute. Bangkok,
 p. 18 (1966). <u>Collection of the Drug Activities, Thailand</u>; Old-Style Doctors'
 Association of Thailand, Part I, p. 301 (1964).
- 2) S. Gronowitz, G. Sörlin, Bo Gestblom, and R. A. Hoffman, <u>Ark. För Kemi</u>, <u>19</u>, 483 (1962).
 W. R. Chan, D. R. Taylor, and C. R. Willis, <u>J. Chem. Soc. (C)</u>, 2781 (1968) and references quoted herein.
- 3) T. Kubota, <u>Tetrahedron</u>, <u>4</u>, 68 (1958).
- H. Budzikiewicz, C. Djerassi, and D. H. Williams, <u>Mass Spectrometry of Organic Compounds</u>, p. 175 (1967), Holden-Day Inc.
- 5) UV absorption maximum (252 mμ) of <u>4</u> supports the presence of β-substituted furano ketone;
 C. Kaneko, T. Tsuchiya, and M. Ishikawa, <u>Chem. Pharm. Bull. Tokyo</u>, <u>11</u>, 271 (1963).
- The identification was carried out by the comparison of the UV spectrum; E. Heilbronner,
 U. Fröhlicher, and Pl. A. Plattner, <u>Helv. Chim. Acta</u>, <u>32</u>, 2479 (1949).